Pytorch实现MobileNetV2

论文链接:https://arxiv.org/abs/1704.04861

MobileNetV2网络是2018年04月发布的,沿用了V1的深度可分离卷积,主要创新点是逆转残差(Inverted Residuals)线性瓶颈层(Linear Bottlenecks)

线性瓶颈层(Linear Bottlenecks)

指的是在bottleneck模块的最后使用的是线性转换而不是ReLU。作者分析认为ReLU破坏了特征图的通道,导致丢失了信息。但是如果有很多的通道,激活信息仍然被保留在其他的通道。
作者认为满足感兴趣流形区域(manifold of interest)坐落在高维激活空间的低维子空间的条件下:

  • 感兴趣流形区域在ReLU之后保持了非0,相当于线性转换。
  • ReLU能够保持输入流性的完整性。

于是,作者提出了线性瓶颈层( Linear Bottlenecks),有效地防止过多信息被破坏。实验也确实验证了猜想,bottleneck的非线性会破坏性能。

逆转残差(Inverted Residuals)

在这里插入图片描述
在这里插入图片描述
(a)是普通的残差bottleneck模块,输入的特征图经过1x1和3x3的卷积进行压缩,再使用1x1的卷积进行扩张还原厚度,且每经过卷积处理都需要进行ReLU的非线性激活;
(b)是逆转的残差bottleneck模块,输入的特征图经过1x1和3x3的卷积进行扩张(即为expansion factor t &gt; 1 t&gt;1 t>1,若 t &lt; 1 t&lt;1 t<1,则为传统的残差卷积模块),再使用1x1的卷积进行压缩还原厚度,且最后的1x1卷积使用的是线性处理,确保了信息不被丢失。
对于逆转的残差bottleneck模块,使用shortcut层的目的于传统的残差模块相同,为了提升梯度传播的能力。同时,逆转的设计非常大的内存效率,同时轻微地提升了性能。

整体的网络结构

在这里插入图片描述

其中 c c c表示输出特征图的channel, n n n表示层的重复次数, s s s表示stride。使用ReLU6作为非线性,因为在低精度下运算下比较鲁棒。输出是全卷积而非 softmax,k 就是识别目标的类别数目。
实现代码:

import torch
import torch.nn as nn
import torch.nn.functional as F


class Block(nn.Module):
    '''expand + depthwise + pointwise'''
    def __init__(self, in_planes, out_planes, expansion, stride):
        super(Block, self).__init__()
        self.stride = stride

        planes = expansion * in_planes
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, 
                               stride=1, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, 
                               stride=stride, padding=1, groups=planes, 
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, out_planes, kernel_size=1, 
                               stride=1, padding=0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 1 and in_planes != out_planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, out_planes, kernel_size=1, 
                          stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_planes),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        out = out + self.shortcut(x) if self.stride==1 else out
        return out


class MobileNetV2(nn.Module):
    # (expansion, out_planes, num_blocks, stride)
    cfg = [(1,  16, 1, 1),
           (6,  24, 2, 1),  # NOTE: change stride 2 -> 1 for CIFAR10
           (6,  32, 3, 2),
           (6,  64, 4, 2),
           (6,  96, 3, 1),
           (6, 160, 3, 2),
           (6, 320, 1, 1)]

    def __init__(self, num_classes=10):
        super(MobileNetV2, self).__init__()
        # NOTE: change conv1 stride 2 -> 1 for CIFAR10
        self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, 
                               padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.layers = self._make_layers(in_planes=32)
        self.conv2 = nn.Conv2d(320, 1280, kernel_size=1, stride=1, 
                               padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(1280)
        self.linear = nn.Linear(1280, num_classes)

    def _make_layers(self, in_planes):
        layers = []
        for expansion, out_planes, num_blocks, stride in self.cfg:
            strides = [stride] + [1]*(num_blocks-1)
            for stride in strides:
                layers.append(
                    Block(in_planes, out_planes, expansion, stride))
                in_planes = out_planes
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layers(out)
        out = F.relu(self.bn2(self.conv2(out)))
        # NOTE: change pooling kernel_size 7 -> 4 for CIFAR10
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def test():
    net = MobileNetV2()
    x = torch.randn(2,3,32,32)
    y = net(x)
    print(y.size())

# test()

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页